Cientistas “espremeram” a luz – uma partícula de cada vez

Mete Atature

Um laser é usado para excitar individualmente "pontos quânticos", pequenos átomos criados artificialmente, para obter um único fotão "espremido"

Um laser é usado para excitar individualmente “pontos quânticos”, pequenos átomos criados artificialmente, para obter um único fotão “espremido”

Uma equipe de cientistas mediu com sucesso partículas de luz sendo “comprimidas” – ou “espremidas” – em uma experiência que havia sido descrita nos livros didáticos de física como impossível de observar.

Esta compressão é um estranho fenômeno da física quântica, criando uma forma muito específica de luz de “baixo ruído” e sendo potencialmente útil na tecnologia projetada para captar sinais fracos, como a detecção de ondas gravitacionais. O método padrão de compressão de luz envolve disparar um feixe de laser intenso em um material, geralmente um cristal não linear, que produz o efeito desejado.

Por mais de 30 anos, no entanto, existe uma teoria sobre outra técnica possível. Ela envolve excitar um único átomo com apenas uma pequena quantidade de luz. A teoria afirma que a luz dispersa por este átomo deve, da mesma forma, ser comprimida. Infelizmente, embora a base matemática para esse método – conhecido como compressão da ressonância de fluorescência – tenha sido elaborada em 1981, o experimento para observá-lo era tão difícil que um consagrado livro de física quântica conclui: “Parece impossível medi-lo”.

E assim era – até agora.

Num artigo publicado na revista “Nature”, uma equipe de físicos relata que conseguiu demonstrar com sucesso a compressão das partículas de luz, ou fótons individuais, usando um átomo construído artificialmente, conhecido como um ponto quântico semicondutor.

Graças às propriedades ópticas melhoradas deste sistema e da técnica utilizada para fazer as medições, os cientistas foram capazes de observar a luz que foi dispersa, e provaram que tinha, de fato, sido comprimida.

Fazendo o impossível possível

De acordo com o professor Mete Atature, do Departamento de Física da Universidade de Cambridge, que liderou a pesquisa, este é “um daqueles casos de uma questão fundamental que os teóricos elaboraram, mas que, depois de anos de tentativas, as pessoas basicamente concluem que é impossível ver de verdade”.

“Conseguimos fazê-lo porque agora temos átomos artificiais com propriedades ópticas que são superiores aos átomos naturais”, explica em entrevista ao site Phys.org. “Isso significa que fomos capazes de alcançar as condições necessárias para observar essa propriedade fundamental de fótons e provar que este fenômeno ímpar de compressão realmente existe no nível de um único fóton. É um efeito muito bizarro que vai completamente contra nossos sentidos e expectativas sobre o que os fótons devem fazer”.

Conceitos complicados

Como muito na física quântica, os princípios por trás do feito envolvem alguns conceitos praticamente incompreensíveis.

Tudo começa com o fato de que, onde quer que haja partículas de luz, também existem flutuações eletromagnéticas associadas. Esta é uma espécie de estática a que os cientistas se referem como “ruído”. Tipicamente, quanto mais intensa a luz, maior será o ruído. Diminuindo a luz, o ruído também diminui.

Mas, estranhamente, a um nível quântico muito fino, esta figura muda. Mesmo numa situação em que não existe luz, ainda existe ruído electromagnético. Isso é chamado de flutuações do vácuo. Enquanto a física clássica nos diz que na ausência de uma fonte de luz estaremos na escuridão perfeita, a mecânica quântica nos diz que sempre há um pouco desta flutuação ambiente.

Mete Atature

Este efeito é chamado "espremer" devido à forma que dele resulta

Este efeito é chamado “espremer” devido à forma que dele resulta

“Se você olhar para uma superfície plana, parece lisa, mas sabemos que, se você realmente aumentar o zoom para um nível super-fino, ela provavelmente não é perfeitamente lisa”, disse Atature. “A mesma coisa está acontecendo com flutuações do vácuo. Uma vez que você entra no mundo quântico, você começa a ter esta impressão fina. Parece que há zero fótons presente, mas, na verdade, há apenas um pouquinho mais do que nada”.

É importante ressaltar que essas flutuações do vácuo estão sempre presentes e fornecem um limite de base para o ruído de um campo de luz. Mesmo lasers, a fonte luminosa mais perfeita conhecida, carregam este nível de ruído flutuante.

É aí que as coisas ficam ainda mais estranhas, porém, porque, nas condições quânticas certas, esse limite base do ruído pode ser reduzido ainda mais. Este estado “menor do que nada” ou “menor do que o vácuo” é o que os físicos chamam de compressão.

No experimento de Cambridge, os pesquisadores conseguiram isso ao lançar um feixe de laser fraco sobre seu átomo artificial, o ponto quântico. Isso excitou o ponto quântico e levou à emissão de um fluxo de fótons individuais. Embora normalmente o ruído associado a essa atividade fotônica é maior do que um estado de vácuo, quando o ponto foi excitado apenas um pouco, o ruído associado com o campo luminoso realmente caiu, tornando-se menor do que a suposta linha de base de flutuações do vácuo.

O porquê

Explicar por que isso acontece envolve física quântica altamente complexa. Em seu núcleo, no entanto, está uma regra conhecida como princípio da incerteza de Heisenberg. Isto indica que, em qualquer situação em que uma partícula tem duas propriedades ligadas, apenas uma pode ser medida e a outra tem de ser incerta.

No mundo normal da física clássica, esta regra não se aplica. Se um objeto está se movendo, podemos medir a sua posição e seu momento linear, por exemplo, para entender onde está indo e quanto tempo provavelmente levará para chegar lá. A dupla de propriedades – posição e momento – está conectada.

No estranho mundo da física quântica, no entanto, a situação muda. Heisenberg afirma que apenas uma parte de uma dupla pode ser medida, e a outra deve permanecer incerta. No experimento de Cambridge, os pesquisadores usaram essa regra a seu favor, criando um equilíbrio entre o que poderia ou não ser medido. Ao espalhar a fraca luz do laser do ponto quântico, o ruído de uma parte do campo eletromagnético foi reduzido a um nível extremamente preciso e baixo, abaixo da linha de base padrão de flutuações do vácuo. Isso foi feito à custa de tornar outras partes do campo eletromagnético menos mensuráveis – o que significa que se tornou possível criar um nível de ruído que era “menor do que nada” em conformidade com o princípio da incerteza de Heisenberg, e, portanto, as leis da física quântica.

A determinação da incerteza com que as flutuações do campo electromagnético podem ser medidas num gráfico cria uma forma em que a incerteza de uma parte é reduzida, enquanto a outra é estendida. Isso cria uma forma “espremida” ou “comprimida”, daí o termo “espremer” a luz.

Atature acrescenta que o objetivo principal do estudo era simplesmente tentar ver essa propriedade de fótons individuais, porque ela nunca tinha sido observada antes. “É o mesmo que querer olhar para Plutão em mais detalhes ou estabelecer que pentaquarks existem”, conta. “Nenhuma dessas coisas tem uma aplicação óbvia agora, mas o objetivo é saber mais do que sabíamos. Fazemos isso porque somos curiosos e queremos descobrir coisas novas. Essa é a essência do que é a ciência”

COMPARTILHAR

DEIXE UM COMENTÁRIO:

EUA: Estudo traz primeiros resultados 'promissores' de vacina de RNA mensageiro contra Aids

Uma vacina usando a tecnologia de RNA mensageiro, a mesma que algumas vacinas contra a Covid-19, pode ser usada desta vez contra a Aids. É o que mostram os primeiros resultados promissores de testes …

Viagem de Lula à Argentina visa fortalecer governo de Fernández e teoria de lawfare contra Kirchner

O ex-presidente Lula será o primeiro estrangeiro a discursar diante de uma multidão na Praça de Maio, em Buenos Aires, em um ato destinado a renovar o vínculo do governo argentino com o seu …

Após EUA, vários países se mobilizam em boicote aos Jogos Olímpicos de Inverno de Pequim

Reino Unido, Austrália, Canadá, Nova Zelândia seguiram os passos dos Estados Unidos e anunciaram que também vão participar do “boicote diplomático” aos Jogos Olímpicos de Inverno de Pequim, previstos para fevereiro. Os países acusam …

Musk anuncia que Neuralink testará microchips neuronais em humanos em 2022

O bilionário e empreendedor norte-americano referiu que já testou com sucesso um implante cerebral em um macaco, e quer agora que essa tecnologia seja aplicada em humanos. Os humanos poderão ter implantes cerebrais da empresa Neuralink …

Cientistas americanos encontram substância contra coronavírus em algas para sushi

Biólogos americanos esperam que sua descoberta ajude na criação de tratamentos antivírus com base em plantas. Os cientistas determinaram que o sulfato de rhamnan – polissacarídeo componente das algas verdes Monostroma nitidum, utilizadas para embrulhar o …

Mulheres comandam metade dos ministérios no governo Scholz

Futuro chanceler confirma nomes finais do seu governo, que deverá começar os trabalhos ainda esta semana. Percentual de mulheres no comando de ministérios federais é o maior da história da Alemanha. O próximo chanceler federal da …

Biden e Putin fazem videoconferência para tentar resolver impasse na Ucrânia

Joe Biden e Vladimir Putin se preparam para uma vídeoconferência nesta terça-feira (7) em um momento em que as tensões entre Washington e Moscou se intensificam com rumores de uma iminente invasão da Ucrânia …

Aung San Suu Kyi é condenada a 4 anos de prisão

Líder deposta por golpe militar em Mianmar enfrenta série de acusações que a Anistia Internacional chama de falsas. Novo veredicto deve sair nos próximos dias. A líder deposta de Mianmar, Aung San Suu Kyi, foi condenada …

Em último vídeo do mandato, Merkel pede que população se vacine

A chanceler alemã Angela Merkel, que deixará o poder na próxima quarta-feira (8), voltou a defender neste sábado (4) a vacinação contra a Covid-19, no último de uma série de mais de 600 vídeos …

Descobrem na China ferramenta de marfim de 99 mil anos, possivelmente a mais antiga do país

Pesquisadores desenterraram uma pá de marfim datada de há cerca de 99.000 anos em um sítio arqueológico do Paleolítico na província chinesa de Shandong. Acredita-se que o objeto seja uma das primeiras ferramentas de osso utilizadas …